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Numerical semigroups

A numerical semigroup is a subset Λ of N0 satisfying

0 ∈ Λ

Λ + Λ ⊆ Λ

#(N0 \ Λ) is finite (genus:=g:= #(N0 \ Λ))

0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 . . .

Gaps: N0 \ Λ, non-gaps: Λ.

Frobenius number: Largest gap.
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Generators

The generators of a numerical semigroup are those non-gaps which can not

be obtained as a sum of two smaller non-gaps.

If a1, . . . , al are the generators of a semigroup Λ then

Λ = {n1a1 + · · ·+ nlal : n1, . . . , nl ∈ N0}

So, a1, . . . , al are necessarily coprime.

If a1, . . . , al are coprime we define the semigroup generated by a1, . . . , al as

〈a1, . . . , an〉 := {n1a1 + · · ·+ nlal : n1, . . . , nl ∈ N0}.
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Counting semigroups by genus

Let ng denote the number of numerical semigroups of genus g.

n0 = 1, since the unique numerical semigroup of genus 0 is N0

n1 = 1, since the unique numerical semigroup of genus 1 is N0 \ {1}

n2 = 2. Indeed the unique numerical semigroups of genus 2 are

{0, 3, 4, 5, . . . },

{0, 2, 4, 5, . . . }.
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Counting semigroups by genus

Conjecture

[Bras-Amorós, 2008]

1 ng > ng−1 + ng−2

2 limg→∞

ng−1+ng−2

ng
= 1

limg→∞

ng

ng−1
= φ
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Counting semigroups by genus

Conjecture

[Bras-Amorós, 2008]

1 ng > ng−1 + ng−2

2 limg→∞

ng−1+ng−2

ng
= 1

limg→∞

ng

ng−1
= φ

What is known

Upper and lower bounds for ng

limg→∞

ng

ng−1
= φ (Alex Zhai)

Weaker unsolved conjecture

ng is increasing.
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The problem of counting by genus

Tree T of numerical semigroups

From genus g to genus g − 1

A semigroup of genus g together with its Frobenius number is another

semigroup of genus g − 1.

0 2 4 5 . . . 7→ 0 2 3 4 5 . . .

A set of semigroups may give the same semigroup when adjoining their

Frobenius numbers.

0 2 4 5 . . .

0 3 4 5 . . .

7→ 0 2 3 4 5 . . .

From genus g − 1 to genus g

All semigroups giving Λ when adjoining to them their Frobenius number can

be obtained from Λ by taking out one by one all generators of Λ larger than its

Frobenius number.
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Tree of numerical semigroups

< 1 >

< 2, 3 >

< 3, 4, 5 >< 2, 5 >

< 4, 5, 6, 7 >< 3, 5, 7 >< 3, 4 >< 2, 7 >

< 5, 6, 7, 8, 9 >

...

< 4, 6, 7, 9 >

...

< 4, 5, 7 >

...

< 4, 5, 6 >

...

< 3, 7, 8 >

...

< 3, 5 >

...

< 2, 9 >

...

The descendants of a semigroup are obtained taking away one by
one all generators larger than its Frobenius number.

The parent of a semigroup Λ is Λ together with its Frobenius number.
[Rosales, Garcı́a-Sánchez, Garcı́a-Garcı́a, Jiménez-Madrid, 2003]
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