Counting numerical semigroups by genus

Maria Bras-Amorós

Universitat Rovira i Virgili Tarragona, Catalonia

IWOKA 2014

Contents

Basic notions

2 The problem of counting by genus

Basic notions

Basic notions

Numerical semigroups

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- $\bullet \ 0 \in \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Numerical semigroups

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- \bullet $0 \in \Lambda$
- $\bullet \ \, \Lambda + \Lambda \subseteq \Lambda$
- $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

Gaps: $\mathbb{N}_0 \setminus \Lambda$, non-gaps: Λ .

Frobenius number: Largest gap.

Generators

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

If a_1, \ldots, a_l are the generators of a semigroup Λ then

$$\Lambda = \{ n_1 a_1 + \cdots + n_l a_l : n_1, \dots, n_l \in \mathbb{N}_0 \}$$

So, a_1, \ldots, a_l are necessarily coprime.

If a_1,\ldots,a_l are coprime we define the semigroup generated by a_1,\ldots,a_l as

$$\langle a_1,\ldots,a_n\rangle:=\{n_1a_1+\cdots+n_la_l:n_1,\ldots,n_l\in\mathbb{N}_0\}.$$

The problem of counting by genus

Let n_g denote the number of numerical semigroups of genus g.

Let n_g denote the number of numerical semigroups of genus g.

• $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0

Let n_g denote the number of numerical semigroups of genus g.

- $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $n_1 = 1$, since the unique numerical semigroup of genus 1 is $\mathbb{N}_0 \setminus \{1\}$

Let n_g denote the number of numerical semigroups of genus g.

- $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- $n_1 = 1$, since the unique numerical semigroup of genus 1 is $\mathbb{N}_0 \setminus \{1\}$
- $n_2 = 2$. Indeed the unique numerical semigroups of genus 2 are

$$\{0,3,4,5,\dots\},$$

$$\{0, 2, 4, 5, \dots\}.$$

Conjecture

[Bras-Amorós, 2008]

$$n_g \geqslant n_{g-1} + n_{g-2}$$

$$\bullet \lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$$

$$\bullet \lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$$

$$\bullet \ \lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$$

Conjecture

[Bras-Amorós, 2008]

$$n_g \geqslant n_{g-1} + n_{g-2}$$

2 •
$$\lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$$

$$\bullet \ \lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$$

What is known

- Upper and lower bounds for n_g
- $\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$ (Alex Zhai)

Conjecture

[Bras-Amorós, 2008]

1
$$n_g \geqslant n_{g-1} + n_{g-2}$$

$$\bullet \quad \lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$$

$$\bullet \ \lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$$

What is known

- Upper and lower bounds for n_g
- lacktriangledown $\lim_{g o \infty} \frac{n_g}{n_{g-1}} = \phi$ (Alex Zhai)

Weaker unsolved conjecture

 n_q is increasing.

Behavior of $\frac{n_{g-1}+n_{g-2}}{n_g}$

Behavior of $\frac{n_g}{n_{g-1}}$

Tree T of numerical semigroups

From genus g to genus g-1

A semigroup of genus g together with its Frobenius number is another semigroup of genus g-1.

Tree T of numerical semigroups

From genus g to genus g-1

A semigroup of genus g together with its Frobenius number is another semigroup of genus g-1.

A set of semigroups may give the same semigroup when adjoining their Frobenius numbers.

Tree T of numerical semigroups

From genus g to genus g-1

A semigroup of genus g together with its Frobenius number is another semigroup of genus g-1.

A set of semigroups may give the same semigroup when adjoining their Frobenius numbers.

From genus g-1 to genus g

All semigroups giving Λ when adjoining to them their Frobenius number can be obtained from Λ by taking out one by one all generators of Λ larger than its Frobenius number.

Tree of numerical semigroups

The descendants of a semigroup are obtained taking away one by one all generators larger than its Frobenius number.

The parent of a semigroup Λ is Λ together with its Frobenius number. [Rosales, García-Sánchez, García-García, Jiménez-Madrid, 2003]