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Given a (finite, simple, undirected) graph G = (V,E), a set S ⊆ V and a vertex v ∈ V \S, a v–S
fan of order k is a collection of k paths P1, . . . , Pk such that (1) every Pi is a path connecting v to
a vertex of S, and (2) the paths are pairwise vertex-disjoint except at v, i.e., for all 1 ≤ i < j ≤ k,
it holds that V (Pi) ∩ V (Pj) = {v}. Given a graph G = (V,E) and an integer-valued function
r : V → Z+ = {0, 1, 2, . . .}, a vector connectivity set for (G, r) is a set S ⊆ V such that for every
v ∈ V \S, there exists a v–S fan of order r(v). We refer to r(v) as the demand (or requirement) of
vertex v.

In [1], Boros et al. introduced the VectorConnectivity (VecCon) problem as the problem
of finding the minimum size of a vector connectivity set for (G, r). (Note that if we require each
path to be of length exactly 1, we get the well-known Vector Domination problem (see, e.g.,
[3, 4]), which is a generalization of the Dominating Set and Vertex Cover problems.)

Let R(G, r) = maxv∈V (G) r(v). Cicalese et al. [2] showed that the VecCon is APX-hard on
instances with R(G, r) ≤ 4 and polynomially solvable if R(G, r) ≤ 2.

Problem 1 (Cicalese et al. [2]) What is the complexity of VecCon on instances (G, r) such
that R(G, r) = 3?

For more (algorithmic) open problems related to vector connectivity refer to [2].
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