

http://www.iwoca.org—Problems section.

Sorting Strings by Reversals

Guillaume Fertin
LINA, UMR CNRS 6241, University of Nantes, France
guillaume.fertin@univ-nantes.fr

presented at IWOCA 2016 18 Aug. 2016

Introduction. The objects we consider are strings of length n, built on an alphabet Σ . Given a string S, let S[i,j] be the substring of S between positions i and j (both included). A reversal $\rho(i,j)$ applied on S consists in taking S[i,j], reversing it, and replacing it at the same location. For instance, if $S = abb\underline{cba}bcc$, then $\rho(4,6)$ gives $S' = abb\underline{abc}bcc$.

Two strings S and T are said to be *compatible* if the multiset used to build S is the same as the one used to build T. For instance, S = abbcbabcc and T = cacbabcbb are compatible because both are built on the multiset $\{a, a, b, b, b, c, c, c, c\}$.

A block in a string S is a maximal substring of S built on only one letter. The number of blocks in S is denoted b(S). For instance, if $S = a\underline{bbcbabcc}$, then the three underlined substrings are blocks, and b(S) = 7.

Finally, for any two compatible strings S and T, we let $b_{max} = \max\{b(S), b(T)\}.$

One problem, three questions. The problem we consider is the following optimization problem:

Given two compatible strings S and T of length n, what is the minimum number of reversals (called rd(S,T)) needed to obtain T from S?

Note that, because reversals are involutive, for any compatible strings S and T, rd(S,T) = rd(T,S), thus identifying the start and end strings is of no importance.

Here are three open questions:

1. Reversal diameter

The reversal diameter D(n, k) is the maximum over all rd(S, T) for all compatible strings of length n with $|\Sigma| = k$. If $|\Sigma| = n$, then S and T are permutations, and in that case we know that D(n, n) = n - 1 [1]. Since $b_{max} = n$ when strings are permutations, can we generalize this to any value of k by saying that $D(n, k) = b_{max} - 1$? (this is a bold conjecture!)

2. Number of blocks in intermediate sequences

Let S and T be two compatible strings, and consider any shortest reversal sequence (or SRS) $(S_1, S_2, ... S_p)$ where $S_1 = S$, $S_p = T$ and p = rd(S, T). The two following properties can be easily shown [2]:

- in any SRS, $b(S_i) = O(b_{max})$ for any i in [1; p]
- there are examples of compatible strings (S, T) for which in any SRS, $b(S_i) > b_{max}$ for at least one i in [1; p]

We have the following conjecture:

For any compatible strings S and T, there exists an SRS such that $b(S_i) = b_{max} + O(1)$ for any i in [1; p].

Can we prove/disprove this conjecture?

3. Approximability of computing rd(S,T)

We know that computing rd(S,T) is NP-hard, even for some very constrained strings built on a binary alphabet [2].

Is the problem approximable within a constant ratio on binary alphabets? Same question when $|\Sigma| = O(1)$.

References

- [1] Vineet Bafna, Pavel A. Pevzner: Genome Rearrangements and Sorting by Reversals SIAM J. Computing 25(2): 272289 (1996)
- [2] Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz: (Prefix) reversal distance for (signed) strings with few blocks or small alphabets. J. Discrete Algorithms 37: 44-55 (2016)