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Question: What happens to the periodicity of a string when three squares (u2,v2,w2)
begin at neighbouring positions separated from each other by at most k?

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� -u
� -v

k w(1) w(2)

� -x[k + 1 . . . k + 2w]

Analysis: In all the cases we know about so far [7, 1, 2], the string breaks down locally
into a repetition of small period. This document draws its focus on the 14 subcases
defined in Table 1.

Table 1. 14 subcases of 3u/2 < v < 2u, 0 ≤ k < v − u

Subcase Special
S k k + w k + 2w Conditions

1 0 ≤ k ≤ u1 k + w ≤ u k + 2w ≤ u+ u1 k ≥ u2

2 0 ≤ k ≤ u1 k + w ≤ u k + 2w ≤ u+ u1 k < u2

3 0 ≤ k ≤ u1 k + w ≤ u k + 2w > u+ u1 —
4 0 ≤ k ≤ u1 u < k + w ≤ u+ u1 — —
5 0 ≤ k ≤ u1 u+ u1 < k + w ≤ v — —
6 0 ≤ k ≤ u1 v < k + w < 2u — —

7 u1 < k < u1 + u2 k + w ≤ u+ u1 k + 2w ≤ 2u —
8 u1 < k < u1 + u2 k + w ≤ u+ u1 k + 2w > 2u —
9 u1 < k < u1 + u2 u+ u1 < k + w ≤ v — w < u
10 u1 < k < u1 + u2 k + w ≤ v k + 2w ≤ u+ v w > u
11 u1 < k < u1 + u2 k + w ≤ v u+ v < k + 2w ≤ 2v − u2 —
12 u1 < k < u1 + u2 k + w ≤ v 2v − u2 < k + 2w —
13 u1 < k < u1 + u2 v < k + w ≤ 2u — —
14 u1 < k < u1 + u2 2u < k + w < 2u+ u2 − 1 — —



Solution: Conjectures for most of the 14 subcases were formulated with the aid of an
implemented algorithm outlined in [2]:

Table 2. Generated Conjectures

Subcases S Conditions Breakdown of x/v2

1,2,5,6,8–10 (∀x, σ = d) x = d(x/d)

3,4,7 σ = d x = d(x/d)

σ > d x = sαs[1 . . . u1 mod s]sγs[1 . . . u1 mod s]sε

11–14 σ = d x = d(x/d)

σ > d ?

where,
d = gcd(u1, u2, w); s = gcd(u− w,w − u1)

α = bu/sc; γ = bv/sc; ε = (u1 + u2)/s

For subcases {1, 2, 5, 6, 8 − 10}, the proofs have been derived in [2]. For subcases
{10, 11− 14} where σ = d, the proofs are outlined in [1].

The remaining subcases {3, 4, 7} for σ ≥ d and {11 − 14} for σ > d remain as
open problems.

Why do we want to know? To be able to use combinatorial knowledge about the
occurrence of multiple squares at neighbouring positions to:

∗ provide a more precise and also computation-free analysis of the occurrence of runs
in a string;

∗ compute repetitions (and perhaps other periodicities) directly rather than using
all the heavy machinery of suffix arrays, etc.

For further background information and examples, please see:

http://www.cas.mcmaster.ca/~bill/cv.shtml

and
http://www.cas.mcmaster.ca/~bj

and the accompanying document on “The Maximum Number of Runs in a String”
by Bill Smyth.
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Given a nonempty string u and an integer e ≥ 2, we call ue a repetition ; if u itself
is not a repetition, then ue is a proper repetition. Given a string x, a repetition in
x is a substring

x[i..i+e|u|−1] = ue,

where ue is a proper repetition and neither x
[
i+e|u|..i+(e+1)|u|−1)

]
nor x[i−|u|..i−1]

equals u. We say the repetition has period |u| and exponent e; it can be specified by
the integer triple (i, |u|, e). It is well known [4] that the maximum number of repetitions
in a string x = x[1..n] is Θ(n logn), and that the number of repetitions in x can be
computed in Θ(n logn) time [4, 3, 13].

A string u is a run iff it is periodic of (minimum) period p ≤ |u|/2. Thus x =
abaabaabaabaab = (aba)4ab is a run of period |aba| = 3. A substring u = x[i..j] of x
is a run or maximal periodicity in x iff it is a run of period p and neither x[i−1..j]
nor x[i..j+1] is a run of period p. The run u has exponent e = b|u|/pc and possibly
empty tail t = x[i+ep..j] (proper prefix of x[i..i+p−1]). Thus

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = b a a a b a a b a a b a b a

contains a run x[3..12] of period p = 3 and exponent e = 3 with tail t = a of length
t = |t| = 1. It can be specified by a 4-tuple (i, p, e, t) = (3, 3, 3, 1). and it includes the
repetitions (aab)3, (aba)3 and (baa)2 of period p = 3. In general it is easy to see that
for e = 2 a run encodes t+1 repetitions; for e > 2, p repetitions. Clearly, computing
all the runs in x specifies all the repetitions in x. The idea of a run was introduced in
[12].

Let rx denote the number of runs that actually occur in a given string x, and let
ρ(n) denote the maximum number of runs that can possibly occur in any string x of
given length n. A string x = x[1..n] such that rx = ρ(n) is said to be run-maximal.

In [10, 11] it was shown that there exist universal positive constants k1 and k2 such
that

ρ(n)/n < k1−k2 log2 n/
√
n,



but the proof was nonconstructive and provided no way of estimating the magnitude
of k1 and k2. In [10], using a brute force algorithm, a table of ρ(n) was computed
for n = 5, 6, . . . , 31, giving also for each n an example of a run-maximal string; for
every n in this range, ρ(n)/n < 1 and ρ(n) ≤ ρ(n−1)+2. In [8] an infinite sequence
X = {x1,x2, . . . .} of strings was described, with |xi+1| > |xi| for every i ≥ 1, such
that

lim
i→∞

rxi/|xi| =
3

2φ
,

where φ = 1+
√
5

2
is the golden mean. Moreover, it was conjectured that in fact

lim
n→∞

ρ(n)/n =
3

2φ
. (1)

Recently a different and simpler construction was found [9] to yield another infinite
sequence X of strings for which the ratio rxi/|xi| approached the same limit; in addi-
tion, it was shown that for every ε > 0 and for every sufficiently large n = n(ε), 3

2φ
−ε

provides an asymptotic lower bound on ρ(n)/n.
In 2006 considerable progress was made on the estimation of an upper bound on

ρ(n)/n:

∗ ρ(n)/n ≤ 5.0 [15];
∗ ρ(n)/n ≤ 3.48 [14];
∗ ρ(n)/n ≤ 3.44 [16]1;
∗ ρ(n)/n ≤ 1.6 [5].

Thus the problems may be stated as follows:

Is conjecture (1) true?
In any case, characterize the function ρ(n)/n.

Help may be found in recent work studying the limitations imposed on the existence
and length of runs in neighbourhoods of positions where two runs are known to exist
[7, 17].

Additional results in 2008

In [6] new perspectives on the problem are discussed. Based on further computational
work, Lucian Ilie’s website

http://www.csd.uwo.ca/faculty/ilie/

claims ρ(n)/n ≤ 1.048n.
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