Overlapping squares in strings (01/2011)

Jenya Kopylova¹ and W. F. Smyth²

Question: What happens to the periodicity of a string when three squares (u^2, v^2, w^2) begin at neighbouring positions separated from each other by at most k?

Analysis: In all the cases we know about so far [7, 1, 2], the string breaks down locally into a repetition of small period. This document draws its focus on the 14 subcases defined in Table 1.

Table 1. 14 subcases of $3u/2 < v < 2u, 0 \le k < v - u$

Subcase				Special
S	k	k + w	k+2w	Conditions
1	$0 \le k \le u_1$	$k + w \le u$	$k + 2w \le u + u_1$	$k \ge u_2$
2	$0 \le k \le u_1$	$k + w \le u$	$k + 2w \le u + u_1$	$k < u_2$
3	$0 \le k \le u_1$	$k + w \le u$	$k + 2w > u + u_1$	
4	$0 \le k \le u_1$	$u < k + w \le u + u_1$		
5	$0 \le k \le u_1$	$u + u_1 < k + w \le v$		_
6	$0 \le k \le u_1$	v < k + w < 2u		
7	$u_1 < k < u_1 + u_2$	$k + w \le u + u_1$	$k + 2w \le 2u$	
8	$ u_1 < k < u_1 + u_2 $	$k + w \le u + u_1$	k + 2w > 2u	_
9	$ u_1 < k < u_1 + u_2 $	$u + u_1 < k + w \le v$		w < u
10	$ u_1 < k < u_1 + u_2 $	$k + w \le v$	$k + 2w \le u + v$	w > u
11	$ u_1 < k < u_1 + u_2 $	$k + w \le v$	$u + v < k + 2w \le 2v - u_2$	
12	$ u_1 < k < u_1 + u_2 $	$k + w \le v$	$2v - u_2 < k + 2w$	
13	$ u_1 < k < u_1 + u_2 $	$v < k + w \le 2u$		
14	$u_1 < k < u_1 + u_2$	$2u < k + w < 2u + u_2 - 1$	_	_

¹ SEQUOIA, Laboratoire d'Informatique Fondamentale de Lille, France evguenia.kopylova@inria.fr

Algorithms Research Group, Department of Computing & Software McMaster University, Hamilton, Ontario, Canada L8S 4K1 smyth@mcmaster.ca

Solution: Conjectures for most of the 14 subcases were formulated with the aid of an implemented algorithm outlined in [2]:

Table 2. Generated Conjectures

Subcases S	Conditions	Breakdown of $\boldsymbol{x}/\boldsymbol{v}^2$
1,2,5,6,8-10	$(\forall \boldsymbol{x}, \sigma = d)$	$oldsymbol{x} = oldsymbol{d}^{(x/d)}$
3,4,7	$ \begin{aligned} \sigma &= d \\ \sigma &> d \end{aligned} $	$egin{aligned} oldsymbol{x} & = oldsymbol{d}^{(x/d)} \ oldsymbol{x} & = oldsymbol{s}^{lpha} oldsymbol{s}[1 \dots u_1 mod s] oldsymbol{s}^{\epsilon} \end{aligned}$
11–14	$ \begin{aligned} \sigma &= d \\ \sigma &> d \end{aligned} $	$oldsymbol{x} = oldsymbol{d}^{(x/d)}$?

where,

$$d = \gcd(u_1, u_2, w); s = \gcd(u - w, w - u_1)$$

$$\alpha = |u/s|; \gamma = |v/s|; \epsilon = (u_1 + u_2)/s$$

For subcases $\{1, 2, 5, 6, 8 - 10\}$, the proofs have been derived in [2]. For subcases $\{10, 11 - 14\}$ where $\sigma = d$, the proofs are outlined in [1].

The remaining subcases $\{3,4,7\}$ for $\sigma \geq d$ and $\{11-14\}$ for $\sigma > d$ remain as open problems.

Why do we want to know? To be able to use *combinatorial knowledge* about the occurrence of multiple squares at neighbouring positions to:

- $\ast\,$ provide a more precise and also computation-free analysis of the occurrence of runs in a string;
- * compute repetitions (and perhaps other periodicities) directly rather than using all the heavy machinery of suffix arrays, etc.

For further background information and examples, please see:

and the accompanying document on "The Maximum Number of Runs in a String" by Bill Smyth.

Problem The Maximum Number of Runs in a String (2008)

 $Bill Smyth^{1,2}$

Algorithms Research Group, Department of Computing & Software McMaster University, Hamilton, Ontario, Canada L8S 4K1 smyth@mcmaster.ca

www.cas.mcmaster.ca/cas/research/algorithms.htm

² Digital Ecosystems & Business Intelligence Institute and Department of Computing, Curtin University, GPO Box U1987 Perth WA 6845, Australia smyth@computing.edu.au

Given a nonempty string u and an integer $e \ge 2$, we call u^e a *repetition*; if u itself is not a repetition, then u^e is a *proper repetition*. Given a string x, a *repetition in* x is a substring

$$\boldsymbol{x}[i..i+e|\boldsymbol{u}|-1] = \boldsymbol{u}^e,$$

where u^e is a proper repetition and neither x[i+e|u|..i+(e+1)|u|-1)] nor x[i-|u|..i-1] equals u. We say the repetition has **period** |u| and **exponent** e; it can be specified by the integer triple (i, |u|, e). It is well known [4] that the maximum number of repetitions in a string x = x[1..n] is $\Theta(n \log n)$, and that the number of repetitions in x can be computed in $\Theta(n \log n)$ time [4, 3, 13].

A string \boldsymbol{u} is a \boldsymbol{run} iff it is periodic of (minimum) period $p \leq |\boldsymbol{u}|/2$. Thus $\boldsymbol{x} = abaabaabaabaabaab = (aba)^4ab$ is a run of period |aba| = 3. A substring $\boldsymbol{u} = \boldsymbol{x}[i..j]$ of \boldsymbol{x} is a \boldsymbol{run} or $\boldsymbol{maximal}$ $\boldsymbol{periodicity}$ in \boldsymbol{x} iff it is a run of period p and neither $\boldsymbol{x}[i-1..j]$ nor $\boldsymbol{x}[i..j+1]$ is a run of period p. The run \boldsymbol{u} has $\boldsymbol{exponent}$ $\boldsymbol{e} = \lfloor |\boldsymbol{u}|/p \rfloor$ and possibly empty \boldsymbol{tail} $\boldsymbol{t} = \boldsymbol{x}[i+ep..j]$ (proper prefix of $\boldsymbol{x}[i..i+p-1]$). Thus

contains a run $\boldsymbol{x}[3..12]$ of period p=3 and exponent e=3 with tail $\boldsymbol{t}=a$ of length $t=|\boldsymbol{t}|=1$. It can be specified by a 4-tuple (i,p,e,t)=(3,3,3,1). and it includes the repetitions $(aab)^3$, $(aba)^3$ and $(baa)^2$ of period p=3. In general it is easy to see that for e=2 a run **encodes** t+1 repetitions; for e>2, p repetitions. Clearly, computing all the runs in \boldsymbol{x} specifies all the repetitions in \boldsymbol{x} . The idea of a run was introduced in [12].

Let $r_{\boldsymbol{x}}$ denote the number of runs that actually occur in a given string \boldsymbol{x} , and let $\rho(n)$ denote the maximum number of runs that can possibly occur in any string \boldsymbol{x} of given length n. A string $\boldsymbol{x} = \boldsymbol{x}[1..n]$ such that $r_{\boldsymbol{x}} = \rho(n)$ is said to be run-maximal.

In [10, 11] it was shown that there exist universal positive constants k_1 and k_2 such that

$$\rho(n)/n < k_1 - k_2 \log_2 n / \sqrt{n}$$

but the proof was nonconstructive and provided no way of estimating the magnitude of k_1 and k_2 . In [10], using a brute force algorithm, a table of $\rho(n)$ was computed for $n=5,6,\ldots,31$, giving also for each n an example of a run-maximal string; for every n in this range, $\rho(n)/n < 1$ and $\rho(n) \le \rho(n-1)+2$. In [8] an infinite sequence $X = \{x_1, x_2, \ldots\}$ of strings was described, with $|x_{i+1}| > |x_i|$ for every $i \ge 1$, such that

$$\lim_{i \to \infty} r \boldsymbol{x_i} / |\boldsymbol{x_i}| = \frac{3}{2\phi},$$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden mean. Moreover, it was conjectured that in fact

$$\lim_{n \to \infty} \rho(n)/n = \frac{3}{2\phi}.$$
 (1)

Recently a different and simpler construction was found [9] to yield another infinite sequence X of strings for which the ratio $r_{\boldsymbol{x_i}}/|\boldsymbol{x_i}|$ approached the same limit; in addition, it was shown that for every $\epsilon > 0$ and for every sufficiently large $n = n(\epsilon)$, $\frac{3}{2\phi} - \epsilon$ provides an asymptotic lower bound on $\rho(n)/n$.

In 2006 considerable progress was made on the estimation of an upper bound on $\rho(n)/n$:

- * $\rho(n)/n \le 5.0$ [15];
- * $\rho(n)/n \le 3.48 [14];$
- * $\rho(n)/n \leq 3.44 [16]^1$;
- * $\rho(n)/n \le 1.6$ [5].

Thus the problems may be stated as follows:

Is conjecture (1) true? In any case, characterize the function $\rho(n)/n$.

Help may be found in recent work studying the limitations imposed on the existence and length of runs in neighbourhoods of positions where two runs are known to exist [7, 17].

Additional results in 2008

In [6] new perspectives on the problem are discussed. Based on further computational work, Lucian Ilie's website

claims $\rho(n)/n \le 1.048n$.

References

 R. J. SIMPSON, Intersecting periodic words, Theoret. Comput. Sci. 374 (2007) 58–65.

¹ Unfortunately, this bound has recently been found to be invalid, due to an error in a proof (2008)

- 2. EVGUENIA KOPYLOV & W. F. SMYTH, **The three squares lemma revisited**, J. Discrete Algorithms (submitted for publication).
- 3. Alberto Apostolico & Franco P. Preparata, **Optimal off-line detection of repetitions in a string**, *Theoret. Comput. Sci.* 22 (1983) 297–315.
- 4. Maxime Crochemore, An optimal algorithm for computing the repetitions in a word, *Inform. Process. Lett.* 12-5 (1981) 244-250.
- 5. Maxime Crochemore & Lucian Ilie, Maximal repetitions in strings, J. Comput. Sys. Sci. (2007) to appear.
- 6. Maxime Crochemore, Lucian Ilie & Liviu Tinta, **Towards a solution to the** "runs" conjecture, Proc. 19th Annual Symp. Combinatorial Pattern Matching (2008) to appear.
- 7. Kangmin Fan, Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A new periodicity lemma, SIAM J. Discrete Math. 20–3 (2006) 656–668.
- 8. Frantisek Franck, R. J. Simpson & W. F. Smyth, **The maximum number of** runs in a string, *Proc.* 14th Australasian Workshop on Combinatorial Algs., M. Miller & K. Park (eds.) (2003) 26–35.
- 9. Frantisek Franek & Qian Yang, An asymptotic lower bound for the maximum-number-of-runs function, Proc. Prague Stringology Conference '06, Jan Holub & Jan Žd'árek (eds.) (2006) 3–8.
- Roman Kolpakov & Gregory Kucherov, Maximal Repetitions in Words or How to Find all Squares in Linear Time, Rapport LORIA 98-R-227, Laboratoire Lorrain de Recherche en Informatique et ses Applications (1998) 22 pp.
- 11. Roman Kolpakov & Gregory Kucherov, **On maximal repetitions in words**, *J. Discrete Algorithms 1* (2000) 159–186.
- 12. Michael G. Main, **Detecting leftmost maximal periodicities**, *Discrete Applied Maths.* 25 (1989) 145–153.
- 13. Michael G. Main & Richard J. Lorentz, An $O(n \log n)$ algorithm for finding all repetitions in a string, J. Algs. 5 (1984) 422–432.
- 14. Simon J. Puglisi, R. J. Simpson & W. F. Smyth, How many runs can a string contain?, *Theoret. Comput. Sci.* (2008) to appear.
- Wojciech Rytter, The number of runs in a string: improved analysis of the linear upper bound, Proc. 23rd Symp. Theoretical Aspects of Computer Science,
 B. Durand & W. Thomas (eds.), LNCS 2884, Springer-Verlag (2006) 184–195.
- 16. Wojciech Rytter, **The number of runs in a string**, *Information & Computation* 205-9~(2007)~1459-1469.
- 17. R. J. Simpson, Intersecting periodic words, Theoret. Comput. Sci. (2007) 58–65