
Entropy-compressed suffix trees

Given a text T[1, n] over an alphabet of size s, a plain representation requires n log s

bits (log is to base 2). A k-th order compressor can reduce its size to nHk bits, where

Hk is the empirical k-th order entropy of T [1]. Classical text indexes such as suffix

trees and suffix arrays [2] require O(n log n) bits. This waste of space is troublesome

when indexing large texts that could fit in main memory but whose indexes

(sometimes 20 times larger than the text!) cannot. Thus there is a strong interest in

reduced-space representations that retain reasonable efficiency.

Many recent developments [3] achieve suffix array functionality using nHk+ o(n log

s) bits, for any k ≤ a logs n and any constant 0 < a < 1. This space also contains the

text, in the sense that the structure is capable of reproducing any text substring. By

“suffix array functionality” I mean counting the number of occurrences of any pattern,

and enumerating its text positions. The former can be done, say, in O(mlog s) time (m

being the pattern length), and the latter in O(polylog(n)) time per reported occurrence.

Suffix tree functionality is more ambitious. It permits navigating the (concrete or

virtual) suffix tree with operations like parent, child-labeled-a, first-child, next-sibling,

suffix-link (leading from node representing ax to node representing x, a being a

symbol and x a string), queries like subtree-size, first-leaf, last-leaf, and optionally

other more ambitious ones like level-ancestor, lowest-common-ancestor, etc.

There have been recent achievements on succinct suffix trees with full functionality,

most notably Sadakane's [4]. Yet all of them still require O(n) extra bits of space on

top of the entropy. In principle, nHk + o(…) bits should be sufficient (as at worst one

can uncompress the text, build the suffix tree, and do the operation!), but no one has

devised a way to operate efficiently on a suffix tree structure that is fully entropy-

compressed, without any extra linear space. I believe this should be possible.

References

1. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM

48(3):407-430, 2001.

2. D. Gusfield. Algorithms on strings, trees, and sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

3. G. Navarro and V. Makinen. Compressed full-text indexes. ACM Computing

Surveys 39(1):article 2, 2007.

4. K. Sadakane. Compressed suffix trees with full functionality. Theory of

Computing Systems, to appear. Preliminary version available at

http://tcslab.csce.kyushu-u.ac.jp/~sada/papers/cst.ps

Gonzalo Navarro,

University of Chile,

Chile.

