International Workshop On
Combinatorial Algorithms
IWOCA

http://www.iwoca.org—Problems section.

Computing The Palindromic Length Faster

Mikhail Rubinchik Arseny M. Shur
Ural Federal University, Russia Ural Federal University, Russia
mikhail.rubinchik@gmail.com arseny.shur@urfu.ru

presented at IWOCA 2015
06-10-2015

A palindrome is a string equal to its reversal. Since letters are palindromes, each string can
be obtained by concatenating palindromes. The minimum number of factors in such concatenation
is the palindromic length of a string, denoted by PL(S). Thus, if S = 01001001, then PL(S) = 2
because S = 0- 1001001 and S is not a palindrome.

Dynamic programming is a natural approach to the computation of the palindromic length: for
a string S of length n define an array PL[0..n] such that PL[i] is the palindromic length of the string
S[1..i] (in particular, PL[n] = PL(S)). Now

PL[0] =0, PL[i] =1+ max{PL[j]|S[j+1..7] is a palindrome}.

In a naive way, the implementation of such an algorithm requires (n?) time and space but this
bound can be lowered to O(nlogn) by processing “series” of palindromic suffixes of the current
string rather than individual such suffixes [1]. (Essentially the same algorithm was obtained in-
dependently in [2].) There are O(logn) series of palindromic suffixes in each position of the word
and every series can be processed in constant time. On the other hand, [1] contains an example of
a string having Q(nlogn) series of palindromes in total. This example speaks in favor of an idea
that ©(nlogn) is the best possible time for finding the palindromic length.

In our IWOCA 2015 paper [3]! we exhibit a new data structure called eertree, which allows one
to store all data about palindromes in a string in a compact form. This data structure can be built
in linear time (offline; the online bound is only slightly worse). Up to now, we were able to get a
new O(nlogn) algorithm for the palindromic length using eertree. However, the potential of this
data structure seems to be big, so we ask the following question:

Is it possible to avoid explicit processing of each single series of palindromic suffixes and improve
the O(nlogn) time bound for the palindromic length problem?

!Probably this citation should be updated later by the official publication.



References
[1] G. Fici, T. Gagie, J. Krkkinen, and D. Kempa: A subquadratic algorithm for minimum palindromic factorization.
J. Discrete Algorithms 28: 41-48 (2014).

[2] T.1,S. Sugimoto, S. Inenaga, H. Bannai, and M. Takeda: Computing palindromic factorizations and palindromic
covers on-line. Proc. CPM 2014, LNCS 8486, Springer, 2014, pp.150161.

[3] M. Rubinchik and A.M. Shur: EERTREE: An Efficient Data Structure for Processing Palindromes in Strings.
IWOCA 2015. Available at: arXiv:1506.04862, 2015.



