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Abstract: Series of Talks

These talks describe work done over the last 30 years or so both to
understand and to compute repetitions in strings — especially
since 1999. We will discover that, although much has been learned,
much combinatorial insight gained, there remains much more that
is unknown about the occurrence of repetitions in strings and the
restrictions they are subject to. I present combinatorial results
discovered only recently, and I suggest that possibly extensions of
these results can be used to compute repetitions in an entirely new
way. I hope that members of the audience will be motivated to
work on some of the many open problems that remain, thus to
extend combinatorial knowledge even further.
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Abstract of Talk I

We begin with an introduction to basic notation, terminology and
data structures related to strings and associated algorithms. We
review the basic algorithms for computing repetitions and runs, as
well as the various approaches to determining bounds on the
number of runs in a string. We argue that these methods, though
ingenious, do not provide enough insight into the possible
behaviours of runs in strings and the relationships among them.
We propose a new way of thinking about runs (squares) that raises
questions for which currently there are only partial answers.
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Terminology & Notation I

∗ A string is a finite sequence of symbols (letters) drawn from some finite or
infinite set Σ called the alphabet. The alphabet size is σ = |Σ|. Usually the
alphabet is ordered, thus inducing lexorder (dictionary order) on the strings.

∗ We write a string x in mathbold, and we represent it as an array x[1..n] for some
n ≥ 0. We call n = x the length of x. For example,

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b
(1)

is a string of length x = 10 on Σ = {a, b}. For x = 0, x = ε, the empty string.

∗ If x = uvw, then u is said to be a prefix, v a substring and w a suffix of x; if
vw 6= ε, uw 6= ε, uv 6= ε, respectively, then u, v, w is, respectively, a proper
prefix, proper substring, proper suffix of x.

∗ If x = uv, then vu is said to be the uth rotation of x, written Ru(x) or xu .

∗ If x = uv = wu for u < x , then u is a border of x, and x has period p = x−u;
that is, for every i ∈ 1..u, x[i ] = x[i+p]. The string (1) has borders abaab and
ab, hence corresponding periods 5 and 8, respectively.
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Terminology & Notation II

∗ If x = vuew, where e > 1 and u is neither a suffix of v nor a prefix of w
(e is maximum), then ue is said to be a repetition in x. The integers u
and e are the period and exponent, respectively, of the repetition.

∗ If a repetition ue occurs at position i in x — that is, x[i ..i+eu−1] = ue

— it can be described by the triple (i , u, e).

∗ For example, in
x = abaababaab,

there are repetitions (1, 3, 2) = (aba)2, (1, 5, 2) = (abaab)2,
(3, 1, 2) = (8, 1, 2) = a2, (4, 2, 2) = (ab)2, (5, 2, 2) = (ba)2. Each of these
repetitions is a square (e = 2). In general, every repetition has a square
prefix.

∗ An interesting string is the Fibonacci string fk:

f0 = b, f1 = a; k ≥ 2 =⇒ fk = fk−1fk−2.

It contains O(fk log fk) repetitions [C81, FS99, IS97].
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Terminology & Notation III

∗ If v = x[i ..j ] has period u, where v/u ≥ 2, and if neither x[i−1..j ]
nor x[i ..j+1] (whenever these are defined) has period u, then x is
said to be a maximal periodicity or run in x [M89] and v is said to
have exponent e = bv/uc.

∗ If a run of period u and exponent e occurs at position i in x, it can
be described by the 4-tuple (i , u, e, t), where the tail t = v mod u.
Thus 0 ≤ t < u; when t = 0, the run is also a repetition.

∗ All of the repetitions in

x = abaababaab

are runs except for (ab)2 and (ba)2: these are substrings of the run
v = (4, 2, 2, 1) = ababa.

∗ In general, every repetition is a substring of some run; thus
computing all the runs implicitly computes all the repetitions.
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Data Structures: ST, SA, LCP

1 2 3 4 5 6 7 8

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5

LCPx = 0 1 1 3 3 0 2 2

j
��

��

HH
HH

0

j
�� @@

1 j
�� @@

2

a ba

7 2
a · · ·

5

ba

8 3
a · · · j

�
�

A
A

3

ba

6 1

a · · ·
4

ba

Figure: Suffix tree, suffix array, LCP array
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ST Checklist

I leaf nodes in lexorder

I internal nodes give lcp

I O(x log σ) construction time, where σ is the alphabet size

I O(x) space

I for construction and search: data structure at each node

I pattern-matching in time proportional to pattern-length m

I essential for repeats, repetitions, LZ

Marvellous!

BUT ... too much space!!
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Data Structures: LZ

A factorization x = w1w2 · · · wk is LZ (for Lempel-Ziv [LZ76, ZL77]) if and
only if each wj, j ∈ 1..k, is

(a) a letter that does not occur in w1w2 · · ·wj−1; or otherwise

(b) the longest substring that occurs at least twice in w1w2 · · ·wj.

We observe that w1 = x[1], further that a factor wj may overlap with its
previous occurrence in x. For the string

x = abaababa

the factorization LZx is given by w1 = a, w2 = b, w3 = a, w4 = aba, w5 = ba.

All of these data structures can be computed in time linear in x (well, almost,
for ST): ST [W73, M76, U95, F97],
SA [MM90, MM93, PST07, NZC09, M09],
LCP [KLAAP01, M04, PT08, KMP09], LZ [ACIKSTY12].

SA [AKO04] can be used at least as efficiently as ST [A85]. Orders other than

lexicographic (e.g., V-order) can also be used for SA construction [DDS12].
10 / 20
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Computing LZ is Brute Force!
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Figure: From [ACIKSTY12]

11 / 20



Outline
Terminology, Notation & Data Structures

Computing Repetitions & Runs
The Maximum Number ρ(n) of Runs
Combinatorial Insight vs. Brute Force

The Three Squares Lemma

Computing Repetitions

In the early 1980s three O(x log x)-time (hence optimal) algorithms
were proposed to compute all the repetitions in a given string x:

∗ Crochemore [C81] describes a method of successive
refinement that identifies all equal substrings of lengths
1, 2, . . . until for some length ` every substring is unique. As
remarked in [S03], his method is essentially an algorithm for
suffix tree construction, with repetitions appearing as adjacent
common prefixes of suffixes of x.

∗ Apostolico & Preparata [AP83] use suffix trees plus auxiliary
data structures.

∗ Main & Lorentz [ML84] use a divide-and-conquer approach
based on prior computation of LZx.
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Computing Runs

∗ In 1989 Main [M89] showed how to compute all “leftmost”
runs, again from LZx.

∗ In 1999 Kolpakov & Kucherov [KK99, KK00] showed how to
compute all runs from the leftmost ones.

∗ Also they proved that the maximum number ρ(n) of runs over
all strings of length n satisfies

ρ(n) ≤ k1n−k2

√
n log2 n (2)

for some universal positive constants k1 and k2.
∗ They provided computational evidence (up to n = 60) that

ρ(n) ≤ n — this was their conjecture.

BUT their method yielded no upper bound on k1 or k2 —
what if k1 = 101010

?
13 / 20
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And Furthermore ...

The K&K method requires BRUTE FORCE, the computation of
global data structures:

∗ SA

∗ LCP

∗ LZ

when the expected number of runs in a string of length n is small

(Puglisi & Simpson [PS08]):

∗ 0.41n runs for alphabet size σ = 2;

∗ 0.25n runs for DNA (Σ = {A,C ,G ,T});
∗ 0.04n for protein (σ = 20);

∗ 0.01n for English-language text.

Runs in most strings are SPARSE!
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Bounding ρ(n)/n (I)

Gradually, as researchers realized its importance [S00], the estimation of
bounds on ρ(n)/n became a growth industry:

∗ In 2006 Rytter [R06] divided runs into two classes: highly periodic (hp)
and weakly periodic. Using separate estimates for these two classes, he
showed that ρ(n)/n < 5.

∗ In 2008 Puglisi, Simpson & Smyth [PSS08] extended Rytter’s work: they
introduced θ-hp runs in which the generator of the run is itself periodic
and has length at least θ times its period. They were able to show that
ρ(n)/n ≤ 3.48.

∗ Also in 2008 Crochemore & Ilie [CI08] showed that ρ(n)/n ≤ 1.6 by
counting runs based not on their starting positions but on their “centres”.
For given p, they divide runs into those of period ≥ p (counted by
ρ≥p(n) ≤ 6n/p) and “microruns” of period ≤ p (counted by ρ≤p(n) ≤ bn
for some computed b). The achieved bound relates to the choice p = 9.
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Bounding ρ(n)/n (II)

∗ Still in 2008 Giraud [G08, G09] established using an elegant
argument that limn→∞ ρ(n)/n in fact exists but is never
attained. Moreover, he proved that ρ(n)/n < 1.52.

∗ Finally, in papers published in 2008 [CIT08] and to appear in
2012 [CIT12], Crochemore, Ilie & Tinta, using the same
approach as in [CI08], raised the value of p, the value
separating “large” from “small” periods, and introduced
massive computation to determine upper bounds on the
number of microruns (essentially the determination of “b”).
They were thus able to claim that ρ(n)/n ≤ 1.048 using
p = 50 [CIT08], later that ρ(n)/n ≤ 1.029 using p = 60
[CIT12] — and three years of CPU time on the Canadian
SHARCNET high performance computer!!!
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Bounding ρ(n)/n (III)

Meanwhile, lower bounds on ρ(n)/n have also been established:

∗ In 2003 Franek, Simpson & Smyth [FSS03] exhibited an
infinite family of strings for which ρ(n)/n > 0.927 for n
sufficiently large.

∗ In 2008 Matsubara, Kusano, Ishino, Bannai & Shinohara
[MKIBS08] found an infinite family for which
ρ(n)/n > 0.944565.

∗ In 2010 Simpson [S10] used Padovan words to show that
ρ(n)/n > 0.944575!!

So what we think we know in 2012 is that, for sufficiently large n,

0.944575 < ρ(n)/n ≤ 1.029.
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I Have Three Problems With These Results:

1. The “proof” that ρ(n)/n ≤ 1.029 suffers from Four Colour
Theorem Syndrome [AH77] — does the program really work?

2. We don’t really know why ρ(n)/n ≤ 1.029 — shortage of
combinatorial insight!

3. We get no algorithm out of it — still the only way to compute
runs is by brute force!

What we want is to understand why the maximal periodicities are
restricted — why there are restrictions on their overlaps — so that
we can process a string from left to right in a controlled way,
outputting the runs as we go.
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A Tiny Idea

If ρn/n is limited to be near one, it means that on average there is
about one run starting at each position. So ... if TWO runs start
at some position, then there must be some other position, probably
nearby, at which NO runs start.

Runs always start with squares — what do we know about squares
that begin at about the same position? What COMBINATORIAL
INSIGHT do we have into the restrictions that might be imposed
upon occurrences of overlapping squares? Not very much – but we
do have a little!
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What We Know:

Lemma (Crochemore & Rytter (1995) [CR95])

Suppose u is not a repetition, and suppose v 6= uj for any j ≥ 1. If
u2 is a prefix of v2, in turn a proper prefix of w2, then w ≥ u+v.

The Fibostring demonstrates that this result is best possible
(squares ending at positions 6, 10, 16 = 6+10, 26 = 10+16):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

x = a b a a b a b a a b a a b a b a a b a b a a b a a b

This tells us that if three squares occur at the same position, then
one of them has to be “large”. But we want to know more: what
if the three squares just overlap, just occur in the same
neighbourhood? What then???

In the next lecture we begin to attack this problem. 20 / 20
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