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Abstract: Series of Talks

These talks describe work done over the last 30 years or so
both to understand and to compute repetitions in string —
especially since 1999. We will discover that, although much
has been learned, much combinatorial insight gained, there
remains much more that is unknown about the occurrence of
repetitions in strings and the restrictions they are subject to. I
present combinatorial results discovered only recently, and I
suggest that possibly extensions of these results can be used
to compute repetitions in an entirely new way. I hope that
members of the audience will be motivated to work on some of
the many open problems that remain, to extend combinatorial
knowledge even further.
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Abstract of Talk III

We describe the “easy case” when u2 and v2 occur at the same
location with u < v ≤ 3u/2 — even two squares can scarcely
occur! Then we show how all this work has barely scratched the
surface — we take a timorous look ahead to the General Case
and its consequences that await us sometime in the future!

3 / 12



The “Easy” Case
The Next Step: Moving Left

The General Case
A New Kind of Repetitions Algorithm?

Exercise

Outline

1. The “Easy” Case
2. The Next Step: Moving Left
3. The General Case
4. A New Kind of Repetitions Algorithm?
5. Exercise.

4 / 12



The “Easy” Case
The Next Step: Moving Left

The General Case
A New Kind of Repetitions Algorithm?

Exercise

The “Easy” Case

Two squares u2 and v2 occur at the same position, but now we
suppose u < v ≤ 3u/2. We get a breakdown into substrings u1
& u2, but a DIFFERENT breakdown, a DIFFERENT u1 & u2:

Lemma

If x = v2 with prefix u2, u < v ≤ 3u/2, then

x = u1
mu2u1

m+1u2u1, (1)

where u1 = v−u ≤ u/2, u2 = u mod u1 ≥ 0, m = bu/u1c ≥ 2,
and u2 is a proper prefix of u1.
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The “Easy” Case — Examples

Consider the example

x = (aabaabaaba)(aab‖aabaaba)abaaab, (2)

with u = aabaabaaba, v = aabaabaabaaab, u1 = aab, u2 = a,
m = 3. Corresponding to the square u2 = (u1

3u2)
2, there is a

run u2a.

For
x = (abbabbabba)(abb‖abbabba)bbaabb, (3)

we again have u2 = a, m = 3, but now u1 = abb and the run u2

cannot be extended.

These examples can be generalized, as we now discover:
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The “Easy” Case — Runs

(R1) v2 and u2u∗ for some possibly empty proper prefix u∗ of u1 such
that both u∗ and u2u∗ are prefixes of u1; for example, u∗ = a in (2),
ε in (3).

(R2) uu∗ = u1
mu2u∗ and u1uu∗ = u1

m+1u2u∗, runs that may be
adjacent as in (3) or overlap as in (2), and that together cover all of x
except for a suffix of the final copy of u1.

(R3) m+1 runs

u2
2u∗, (u1u2)

2u∗, . . . , (u1
mu2)

2u∗ = u2u∗, (4)

all centred at position u+1 of x , with the first one u2
2u∗ repeated at

position (2m+1)u1+u2+1. The centred runs (4) arise in the
analyses of [R06] and [CI08].

(R4) Miscellaneous runs of period strictly less than u1. For example, the
runs aa that occur as a substring of occurrences of u1 in (2). Another
example: in the case u1 = abaab, u2 = a, m = 2,

x = abaababaabaabaab abaababaabaabaab,

we identify, in addition to 2m+4 runs aa, a sequence of four
overlapping runs (aba)2, (aba)4, (aba)2, (aba)3ab, that cover x .
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The “Easy” Case — Main Result

Lemma

The string (1), u2 > 0, contains no repetitions (runs) of period
z ≥ u1 other than those characterized in (R1)-(R3).

Thus for x = u1
mu2u1

m+1u2u1 of length

x = (2m+2)u1 + 2u2 = (2u1)m+2(u1+u2), u2 > 0,

there exist exactly m+5 runs (R1)-(R3), together with runs (R4)
of period strictly less than u1, and no others: over a wide range
of lengths w , no square w2 can occur!
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Negative k

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� -u� -v

k
w (1) w (2)

This simple extension of the problem has not been studied at all:
∗ What values of k will be interesting?

∗ What values of w?

∗ Note that w will be forced to have a prefix composed of some
substring of a rotation of u; in some cases, this will result in an
illegal leftward extension of either the run u2 (when the stub k
ends with a suffix of u1) or the run v2 (when k ends with a suffix
of u2).

∗ In particular, the letter to the left of u2 is constrained NOT to be
either the last letter of u or the last letter of v ! 9 / 12
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Three Neighbouring Squares

u u
v v

w w

k1
k2

Nothing is known!

But it is certain that somewhere in the area of overlap of the
three squares, analysis will reveal a similar breakdown into
repetitions of small period.

Three squares are ... impossible!
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A New Kind of Repetitions Algorithm?

If three squares are impossible, then shouldn’t we be able to
process the string left-to-right, just keeping track of a “small”
square (u2) and a “big” square (v2), while watching out for
multiple repetitions of small period?

???
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Exercise

Write
(a) pseudocode
(b) a C program

that inputs a value xmax , and then
∗ for all values x ∈ 3..xmax ,
∗ for all u ∈ 2..x−1 such that x mod u > 0,
∗ for all v ∈ 1..x−1,

computes x subject to the constraint that x and Rv (x) both have period u
(perhaps using a methodology similar to that of Jenya’s program). Then
compare your result to the result predicted by the lemma “Two Rotations,
Same Period”; if the result is not the same, make a suitable output.

(Maybe you’ll find an error in the lemma — it’s only been “proved” by a human
brain, not checked by a computer!)

Send your solution to smyth@mcmaster.ca with subject line “Two
Rotations, Same Period”.
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