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Let f(n) be the maximum number of edges in a graph on n vertices in which no two cycles
have the same length. In 1975, Erdos raised the problem of determining f(n) (see J.A. Bondy and
U.S.R. Murty [1], p.247, Problem 11). Y. Shi [12] proved that

f(n) >n+[(vV8n—23+1)/2]
for n > 3. E. Boros, Y. Caro, Z. Fiiredi and R. Yuster [2] proved that
F(n) < n+ 1.98vn(1 + o(1)).

Lai [7] proved that
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and conjectured that
liminf LV =" 5,
n—00 \/ﬁ

Lai [6] proposed the following conjecture:

Conjecture [6].
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It would be nice to prove that



Let fa(n) be the maximum number of edges in a 2-connected graph on n vertices in which no

two cycles have the same length.

In 1988, Shi[12] proved that

For every integer n > 3, fa(n) < n+ [1(v/8n —15 — 3)].

In 1998, Guantao Chen, Jeno Lehel, Michael S.Jacobson, and Warren E. Shreve [3] proved that
() = n+ /2 - o(y/n)

In 2001, E. Boros, Y. Caro, Z. Fiiredi and R. Yuster [2] improved this lower bound significantly:
fa(n) > n+ yn — O(n).

and conjectured that

lim 22 — .

It is easy to see that this Conjecture implies the (difficult) upper bound in the Erdos Turan

Theorem [4][5](see [2]).

Markstrom [11] raised the problem of determining the maximum number of edges in a hamil-

tonian graph on n vertices with no repeated cycle lengths.

Let g(n) be the maximum number edges in an n-vertex, Hamiltonian graph with no repeated

cycle length. J. Lee, C. Timmons [9] prove the following.

If ¢ is a power of a prime and n = ¢® + ¢ + 1, then

g(n)>n+4/n—3/4-3/2

A simple counting argument shows that g(n) < n+ v2n + 1.
It would be nice to determining g(n) for infinitely many n.
J. Ma, T. Yang [10] prove a conjecture of Boros, Caro, Fiiredi and Yuster on the maximum

number of edges in a 2-connected graph without repeated cycle lengths, which is a restricted
version of a longstanding problem of Erd6s. Their proof together with the matched lower bound
construction of Boros, Caro, Fiiredi and Yuster show that this problem can be conceptually reduced
to the seminal problem of finding the maximum Sidon sequences in number theory.

Any n-vertex 2-connected graph with no two cycles of the same length contains at most n +

Vi + o(y/n) edges.

The survey article on this problem can be found in [8].
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